
Evaluation of Single Chip Multiprocessor Core Architecture with

Near Fine Grain Parallel Processing

Keiji Kimura and Hironori Kasahara

Dept. of Electrical, Electronics and Computer Engineering, Waseda University.
Okubo, Shinjuku-ku, Tokyo, Japan, 169-8555, TEL: +81-3-5286-3371

URL: http://www.kasahara.elec.waseda.ac.jp/

1 Introduction
Superscalar processors that have been widely used are
facing their performance limitation with the increase
of design time and cost. To cope with these problems,
researches on single chip multiprocessor architectures
(SCM) have been started [1, 2, 3, 4, 5, 6]. Among
them, a SCM architecture supporting multigrain par-
allel processing, which exploits coarse grain task level,
loop level and (near) �ne grain level parallelism hierar-
chically, will be one of the most promising approaches
to attain scalability and cost e�ectiveness. To exam-
ine the most suitable SCM processor core architecture
for multigrain parallel processing, this paper evaluates
several SCM processor core architectures having di�er-
ent instruction issue widths for near �ne grain parallel
processing which is one of the key issues in multigrain
parallel processing.

2 Multigrain Parallel Process-

ing
The multigrain parallel processing[7] realized by OS-
CAR Fortran compiler[8, 9] uses coarse grain task par-
allelism among loops, subroutines and basic blocks [8],
loop parallelism among loop iterations and near �ne
grain parallelism[10] among statement inside a basic
block.

2.1 Coarse-grain Task Parallel Pro-
cessing [7, 8, 9]

In the coarse grain task parallel processing[7], a source
sequential program is decomposed into three kinds of
coarse grain tasks, or macrotasks (MTs), such as Block
of Pseudo Assignment statements (BPA), Repetition
Block (RB) and Subroutine Block (SB). After gen-
eration of macrotasks, the compiler analyzes control

ows and data dependencies among MTs. The result
of analysis is represented by a directed acyclic graph
called Macro-Flow-Graph (MFG). Next, in order to
�nd the maximum parallelism among MTs considering
control dependences and data dependences, the com-
piler analyzes an earliest-executable-condition for each
MT. These earliest-executable-conditions of MTs are
represented by acyclic graph called MacroTask-Graph

(MTG). After generation of MTG, MTs are assigned
onto processor-groups (PGs).

2.2 Loop Iteration Level Parallel Pro-
cessing

If a MT assigned to a PG is a Doall loop, the MT
is processed in the iteration level grain by processing
elements (PEs) inside a PG.

2.3 Near-�ne Grain Parallel Process-
ing [10]

If a MT assigned to a PG is a BPA or some kinds
of sequential loops, it is decomposed into near �ne
grain tasks, each of which consists of a statement,
and processed into parallel by PEs inside a PG. The
compiler analyzes data dependences among statements
and generates tasks. Next, OSCAR compiler as-
signed these tasks onto PEs statically to minimize
data transfer and synchronization overhead. At this
time, the compiler uses four heuristic scheduling al-
gorithms, CP/DT/MISF, CP/ETF/MISF, ETF/CP
and DT/CP, and chooses the best schedule automati-
cally. After scheduling, the compiler generates the ma-
chine codes for each PE by putting together instruc-
tions for tasks assigned to the PE and by inserting
instructions for data transfer and synchronization into
the required places using statically scheduled result.

3 Evaluated Single Chip Multi-

processor Architecture
This section describes single chip multiprocessors
(SCMs) and their processor cores evaluated in this pa-
per. For this evaluation, clock level detailed simulator
was developed.

3.1 Memory Architecture
Network and memory architecture for single chip mul-
tiprocessor (SCM) for near �ne grain parallel process-
ing evaluated in this paper is based on multiproces-
sor system OSCAR[9] as shown in Figure 1. In this
SCM architecture, each processing element (PE) has
CPU, local program memory (LPM), local data mem-
ory (LDM), distributed shared memory (DSM) hav-
ing two ports and data transfer unit (DTU). DTU is

1



CPU DTU

DSM

LPM

LDM

Bus Interface

PE0 PE1 PE2 PE3

Multiple Buses

CSM

Chip

Figure 1: OSCAR type architecture.

used for overlapping of data transfer and computation
by compiler control though this function is not used
in this paper. Three buses connect these PEs in this
evaluation through other interconnects like crossbar
can be also used.

LPM stores program code exclusively generated to
the PE by the compiler. This LPM supplies four
instructions in one clock cycle. DSM provides low-
latency data transfer and low-overhead synchroniza-
tion in near �ne grain parallel processing. DSM can be
used for data transfer without preventing remote PE
execution and minimize data synchronization overhead
since \busy wait" for synchronization is performed in-
side a PE without consuming network and centralized
shared memory band width. LDM stores PE local data
and can have twice larger memory than DSM since lo-
cal memory only has a single port. The total capacity
of LDM inside a chip is 1M bytes. In case of 4PEs
inside a chip, the capacity of LDM is 256K bytes per
PE respectively. In addition, in case of 2PEs inside
a chip, each PE has 512K bytes LDM. The access la-
tency of LDM is one clock cycle. The capacity of DSM
is 16K bytes per PE respectively. Local DSM access
latency is one clock cycle and that of remote DSM is
four clock cycles. In this SCM memory architecture,
storing data and setting synchronization 
ag take four
clocks respectively, loading data takes one clock cy-
cle and checking synchronization 
ag takes �ve clock
cycles.

Furthermore, this SCM processor has centralized
shared memory (CSM) outside the chip. Access la-
tency to the CSM is assumed as 20 clock cycles.

3.2 A Base Processor Core Architec-
ture

A base processor core inside the chip has in-order-
issue superscalar processor core that is based on Ul-
traSPARC II[11] microprocessor. This processor core
has two integer execution units (IEU), one load-store
unit (LSU) and two 
oating-point units (FPU). In this
evaluation, the number of function units and instruc-
tion issue width is changed as shown in Table 1 for
single-issue, two-issues and for-issues processor core.

4 Performance Evaluation
In this section, SCM architecture having single-
or multiple-instruction-issue-width processor core are
evaluated. For the evaluation, the following workloads
are used.

Random sparse matrix solution (Program S)
This program is Fortran loop-free code that con-
sists of 94 arithmetic assignment statements, or
near �ne grain tasks.

NS3D
This program is a part of CFD program \NS3D"
developed by National Aerospace Laboratory in
Japan. It is a loop body of the largest loop inside
a subroutine SUB4. This loop body has 429 near
�ne grain tasks.

FPPPP
This program is a subroutine \FPPPP" of pro-
gram \FPPPP" from SPECfp95 benchmark pro-
grams. This subroutine consumes about 35% of
total execution time and has 333 near �ne grain
tasks.

These programs are processed in near �ne grain par-
allel processing on target SCM architectures.

4.1 E�ect of Issue Width and Number
of PEs

Considering with total instruction issue width, three
types of architectures are evaluated such as 1PE �

4Issue, 2PE � 2Issue and 4PE � 1issue. Figure 2
shows the speed-up ratio based on sequential execution
time on single-issue processor core.

Figure 2 shows that 1Issue� 4PE gives us 2.84 times
speed-up for random spars matrix solution, while 4Is-
sue � 1PE gives us 1.15 times and 2Issue � 2PE gives
us 2.12 times respectively. Similarly, 1Issue � 4PE
gives us 2.18 times speed-up for NS3D, while 4Issue �
1PE gives us 1.15. For FPPPP, 1Issue � 4PE gives us
2.98 times speed-up, while 4Issue � 1PE gives us 1.24
times. For all cases, 1Issue � 4PE gives us the best
performance of all three types of architectures. These
results show that increasing the number of PEs con-
tributes to scalable performance improvement more
than increasing the number of instruction issue width.

Table 1: The number of function units
Issue-width IEU LSU FPU

1 1 1 1
2 1 1 1
4 2 1 2

IEU: Integer Execution Unit
LSU: Load-Store Unit
FPU: Floating-Point Unit

2



�

���

�

���

�

���

�

���

���	
���
� ���	����
� 
��	����
�

�
�
�
�
�
�


�
��
�
��
�

�

����

�����

Figure 2: Multiple issues processor cores vs. single
issue processor core SCM

�

���

�

���

�

���

�

���

�

���

��	
	
���
�

��	
	
���
�

��	
	
���
�

��	
	
���
�

�����
����

�����

�

��

�����
��

��

�
�

�
�

�
�



�

��
�

� 
�

�

!��"

#����

Figure 3: Simple processor core SCM vs. out-of-order
processors

4.2 Simple processor core SCM vs.
Out-of-order Processor

Next, performances of 1Issue � 4PE SCM and out-of-
order superscalar processor are evaluated. The func-
tion unit organization of evaluated out-of-order proces-
sor is similar to Compaq Alpha21264[12]. This proces-
sor has four integer execution units (IEU), two load-
store units (LSU) and two 
oating-point units (FPU),
and can issue up to six instructions in one cycle. In
addition to this out-of-order processor (ooo(BASE)),
two types of extended out-of-order processors like four
FPU (ooo(FPU4)) and four LSU (ooo(LSU4)) are also
evaluated.

Figure 3 shows the speed-up ratio against sequen-
tial execution time by single-issue processor core. In
this �gure, 1Issue � 4PE gives us a little better perfor-
mance than ooo(BASE), ooo(FPU4) and ooo(LSU4).
In addition, SCM architecture gives us about 1.4 times
performance improvement by adding two PEs (namely
1Issue � 6PE) requiring comparable number of tran-
sistors as ooo(FPU4) and ooo(LSU4). This shows that
SCM architecture achieves scalable performance im-
provement by adding PEs.

5 Conclusions
This paper evaluated single chip multiprocessor
(SCM) processor core architectures for near �ne grain

parallel processing as the preliminary research for
SCM architecture that supports multigrain parallel
processing. The evaluation shows that the SCM archi-
tecture having four single-issue processor cores gives
us 2.49 times better performance than a four-issue in-
order superscalar processor. Furthermore, the simple
processor core SCM was compared with complex six
issue out-of-order processor. As a result, the sim-
ple SCM architecture having four single issue PEs
gives us a little better performance than the complex
out-of-order processor. In addition, SCM architecture
gives us about 1.4 times performance improvement by
adding two PEs though the 1 Issue � 6PE only con-
sumes less transistors than complex six issue out-of-
order processor. These results show that SCM archi-
tecture having simple processor core gives us scalable
performance improvement by near �ne grain parallel
processing.

ACKNOWLEDGEMENTS
A part of this research has been supported by STARC.
The authors thank to Mr. Ozawa (STARC), Mr. Hi-
rata (STARC), Mr. Asano (Toshiba), Mr. Kurata
(Sony), Mr. Takahashi (Fujitsu) and Mr. Takayama
(Matsushita).

References

[1] Sun Microsystems, Inc. MAJC Home Page, 2000. http:
//www.sun.com/ microelectronics/ MAJC/.

[2] K. Diefendor�. Power4 focuses on memory bandwidth. Mi-
croprocessor Report, 13(13), 1999.

[3] L. A. Barroso, K. Gharachorloo, et al. Piranha: A scalable
architecture based on single-chip multiprocessing. In Proc.
ISCA 00, June 2000.

[4] L. Hammond, B. Hubbert, M. Siu, M. Chen, and K. Oluko-
tun. The Stanford HYDRA CMP. IEEE MICRO Maga-
zine, 20(2):71{84, 2000.

[5] NEC Corporation. MP98 Project, 2000. http:
//www.labs.nec.co.jp/ MP98/.

[6] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Maps:A Compiler-Managed Memory System for Raw Ma-
chines. In Proc. of ISCA-26, June 1999.

[7] H. Kasahara, H. Honda, and S. Narita. A multigrain par-
allelizing compilation scheme for oscar. In Proc.4th Work-
shop on Lang. and Compilers for Parallel Computing, Aug
1991.

[8] H. Kasahara, M. Obata, and K. Ishizaka. Automatic
coarse grain task parallel processing on smp using openmp.
In Proc. of 13th International Workshop on Language
and Compilers for Parallel computing (LCPC'00), August
2000.

[9] H. Kasahara, M. Okamoto, et al. OSCAR Multi-grain Ar-
chitecture and Its Evaluation. In Proc. IWIA'97. IEEE
computer Press, Oct 1997.

[10] H. Kasahara, H. Honda, and S. Narita. Parallel processing
of Near Fine Grain Tasks Using Static Scheduling on OS-
CAR (Optimally Scheduled Advanced Multiprocessor). In
Proc. of Supercomputing '90, Nov 1990.

[11] Sun Microelectronics. UltraSPARCTM User's Manual, Jul.
1997.

[12] R. E. Kessler. The alpha 21264 microprocessor. IEEE
MICRO Magazine, 19(2):24{36, 1999.

3


